Recap of Starship SN10 Launch and Landing

Starship SN10 (the rocket that will take humans to Mars) performed a historic launch, test flight, and landing on March 3rd, 2020 in Boca Chica, Texas.

Averaging 1 test flight per month (3 flights have happened since December 9, 2020), SpaceX plans to one day have regularly occurring Starship flights carrying payloads including smallsats, Starlink satellites, and eventually humans.

Sign up for SPACE TRAVEL News, Progress, and Insights. Delivered right to your inbox, every Monday.

Processing…
Success! You're on the list.

The high altitude flight test began much like previous Starship flights of SN8 as well as SN9, with much anticipation, a few delays, and thankfully a successful take off.

Early in the day SN10 had a launch attempt, but the computer stopped the countdown just before lift-off because the thrust of a raptor engine slightly exceeded the allowable limit.

The team did a few evaluations, and later decided that the engines were good to go, ready for a second attempt.

Close-up view of Starship exhaust. source: SpaceX

Launch delays have occurred quite often leading up to the previous launches of both Starship prototypes as well as Falcon 9 Starlink missions.

Purpose of Starship SN10 test flight:

The goal of the SN10 test flight is to launch and fly to an altitude of 10 km while gathering data on how well the flaps function to control the vehicle while it is horizontal.

According to SpaceX’s website:

“A controlled aerodynamic descent with body flaps and vertical landing capability, combined with in-space refilling, are critical to landing Starship at destinations across the solar system where prepared surfaces or runways do not exist, and returning to Earth. This capability will enable a fully reusable transportation system designed to carry both crew and cargo on long-duration, interplanetary flights and help humanity return to the Moon, and travel to Mars and beyond.”

The rockets SpaceX is using for these test flights are not built to carry humans (yet) – they are very much prototypes built to be used as test vehicles.

During flight, SN10 engines shut down sequentially. The purpose of the engine shutdown is to reduce thrust, slow the rocket down, so that it doesn’t go higher and about 10 km as planned. Starship was not planning to enter orbit or reach higher altitudes.

Three raptor engines were intentionally shut off one by one and Starship was at one point accelerating vertically on just one engine.

As it reached apogee, peaking at around 10 km altitude, Starship hovered in equilibrium, where the engine thrust force was equal to the force of gravity.

Apogee is the point at which an object (such as a moon, satellite, or in this case, Starship) is furthest from Earth.

Finally, the last raptor engine shut off, and Starship began its free-fall descent. Controlled by the flaps, Starship rocket maintained aerodynamic control with a high degree of finesse.

The rocket continued falling, rotating into the famous “belly flop”.

SN10 belly flop. source: SpaceX

Starship continued to fall in its belly flop, reaching terminal velocity. Eventually the engines re-lit to make the entire vehicle to rotate vertically in preparation for landing.

From the viewer’s perspective, the rocket appeared to be somewhat slanted from vertical as it landed moved towards the landing pad.

Space enthusiasts across the globe held their breath in anticipation, watching live streams as Starship inched closer to the landing pad.

Creating a huge cloud of dust, Starship SN10 has history, successfully landing. There was no explosion on landing, as happened with both SN8 and SN9.

source: SpaceX

Starship gleamed in the south Texas sun on the landing pad, while the rocket’s reflective steel shell illuminated, signifying a job well done. Congrats, SpaceX team!

Post-flight ends with a big bang

Although the rocket did land successfully, SN10 would not have fit in with both SN9 and SN8 if it didn’t ultimately end with a rapid unplanned disassembly. As viewed from the streaming cameras of Everyday Astronaut and others, a few minutes after landing, SN10 exploded.

While Starship is of course still not passenger ready, viewers get to enjoy the excitement of a massive explosion that resembles something out of a Hollywood movie.

It is unclear what caused the explosion, but according to Toby Li’s tweet here, SN10’s landing legs may have been damaged.

Regardless, the high-altitude flight test of SN10 was a massive success.

The SpaceX YouTube channel provides footage and commentary from the SpaceX team. The commentator mentioned that the next test flight would be held with Starship SN11.

SpaceX was able to record a few segments of amazingly high-definition video. The ultra up close take-off and landing clips appear to have been taken via drone and are quite spectacular. Worth a watch below:

Sign up for SPACE TRAVEL News, Progress, and Insights. Delivered right to your inbox, every Monday.

Processing…
Success! You're on the list.

Join us on Social Media:
@EspressoInsight on Twitter, Instagram, and TikTok

How To Get Hired At SpaceX

What does it take to get a job at SpaceX?

SpaceX’s prime objective is to build a self sustaining colony on Mars.

Achieving a mission of this level of impact requires the company to hire the brightest minds in the world. If you have what it takes and believe in the mission, you should try to work there. What SpaceX is trying to do is not easy – the team needs all the help they can get.

Sign up for SPACE TRAVEL News, Progress, and Insights. Delivered right to your inbox, every Monday.

Processing…
Success! You're on the list.

As of 2021, SpaceX wants to hire engineers, supervisors, and technicians for its Starship project.

The company’s career website mentions that it is looking for world-class talent ready to tackle challenging projects that will ultimately enable life on other planets.

The company of course mentions that they are an equal opportunity employer offering competitive salaries, comprehensive health benefits and equity packages.

“We hire great engineers as fast as we can find them” – Elon Musk.

They are also looking for hardware, software and firmware engineers. Firmware engineers are needed specifically for the Starlink project, which will be one of SpaceX’s first revenue streams to help fund missions to Mars.

Firmware is software (often written in C) that is stored on hardware device to make it run properly.

SpaceX Hiring Strategy:

“There’s no need even to have a college degree at all, or even high school” – Elon Musk

No Degree Required

You don’t need a college degree to work for SpaceX. CEO Elon Musk has both tweeted about this as well as mentioned it in multiple interviews.

When the founder of SpaceX was starting the company, he had no experience building rockets. Elon came from a background in the software industry. He reportedly cold-called rocket scientists to learn about building and launching rockets, and even apparently tried to buy a ballistic missile from Russia to use as a first test.

Elon mentioned that Steve Jobs, Bill Gates, Larry Ellison, all did not graduate from college. However, if you had the opportunity to hire any of them, it would be a great idea.

Americans and Internationals:

SpaceX is legally prevented from hiring people from outside the US. According to the US Government, working on Rocket Technology in the United States requires employees to be a US Citizen or green-card holder.

How Does Elon Describe Hiring at SpaceX?

In an online video, when asked about what skills he wants people to have, CEO Elon says he is looking for evidence of exceptional ability.

He asks candidates share the story of their career. He specifically wants to know about challenging problems the candidate has dealt with and how they make decisions. Elon stated that he wants to know if the person was truly responsible for the accomplishment or if someone else was – he can ask for details and the one that was will have those details.

The SpaceX hiring team looks for at track record of exceptional achievement. In order to actually get to Mars, the company needs to hire people that have “some evidence of exceptional ability that includes innovation”. Since the company is creating new technology, they expect their employees to have a deep drive to do so too.

TechCrunch has called SpaceX “one of the world’s most demanding engineering companies.” As you can imagine, the hiring process at SpaceX is unsurprisingly grueling.

By hiring only the greatest minds, SpaceX’s strict approach to hiring let’s the company focus on that which truly matters: solving big problems.

Next steps for job seekers

I follow the company on LinkedIn and they publish new jobs all the time. The company is in fact rapidly hiring, albeit incredibly selective, and will be for many years (going to Mars is no small task).

Wanna give the SpaceX application process a shot? They have job openings on their website, or hit the company up on Twitter and maybe you’ll get lucky.

Recap of Starship SN9 Flight Test

SN9 Starship Test Flight

SN9 test flight of Starship was delayed a few times, but fortunately it finally launched last week.

Spoiler – the flight ended much the same way that SN8 did – with a big, fiery explosion.

On 2/2/21, according to Twitter, Starship launch area was being cleared of vehicles. Launch anticipated for today and it happened! Starship SN9 launched.

On 1/26/21, Elon confirmed on Twitter that the FAA has reviewing the prospective test flight.

Starship launchpad update: on 1/19/21, SpaceX purchased two floating oil rigs which will become floating launchpads for Starship. The two launchpads have been called Deimos and Phobos, named after the two moons of Mars.

Sign up for SPACE TRAVEL News, Progress, and Insights. Delivered right to your inbox, every Monday.

Processing…
Success! You're on the list.

SN9 UPDATE 1/14/21: Starship SN9 performed three static fire tests.

What is a “Static Fire”?
– A static fire is a planned system test that launch vehicles and ground support equipment undergo to verify that the rocket is ready for flight.
– During a static fire, the rocket’s engines briefly perform a test fire while staying bolted to the ground.
– The goal of a static fire test is to identify problems during the test, before the actual launch.

SN9 performed another static fire on January 6, 2020. A successful landing of SN9 would be a major milestone.

Delays of scheduled flights are common due to weather as well as the FAA regulations

Sign up for SPACE TRAVEL News, Progress, and Insights. Delivered right to your inbox, every Monday.

Processing…
Success! You're on the list.

Join us on Social Media:
@EspressoInsight on Twitter, Instagram, and TikTok

Recap of Starship SN8 Test Flight

Starship – the grand vessel that will take humans to Mars – performs its historic 12.5 km launch.

Starship SN8 Test Flight Recap

spacex starship hop 1
source: NASAspaceflight

On December 9th, 2020, people gathered on the beaches, parking lots and balconies in the surrounding areas of South Padre Island in Boca Chica, Texas. Space enthusiasts had flown in, YouTubers had their streaming cameras live and ready, and millions more tuned in remotely in anticipation of SpaceX Starship’s 12.5 km unmanned “hop”.

All day, people waited. Hours pass, with not much action. The first sign of advancement was the formation of a small condensation ring on the body of the spacecraft, just above the fins. This happens during fueling, caused by the overflow of liquid oxygen from the condenser as it fills the tanks. The rapid expansion of pressurized gas (in this case, liquified oxygen) is an endothermic process in which the gas loses heat energy, making the surroundings extremely cold.

Sign up for SPACE TRAVEL News, Progress, and Insights. Delivered right to your inbox, every Monday.

Processing…
Success! You're on the list.

Liquid oxygen is an important component of the fuel, serving as the oxidizer. Starship uses liquid oxygen (aka LOX), and Methane (CH4) as rocket fuel.

Key Events from Starship Hop:

  • Successful ascent
  • Successful switchover to header tanks
  • Successful pivot
  • Flap control
  • Longest in-flight firing of a raptor engine
  • In control until the end
  • On target
  • Sufficient data gathered

Starship Launch

As the engines fire, there is no turning back. All or nothing, skyward.

spacex starship hop 2
source: nasaspaceflight.com

As the rocket takes off, as clouds instantly balloon to twenty times their size. As they grow larger, and seem to resemble exhaust smoke, the clouds are actually just steam, H2O water vapor. This is the main byproduct of the combustion reaction.

The other byproduct of the combustion reaction between methane and liquid oxygen is carbon dioxide, which is invisible.

spacex starship hop 3
source: Nasaspaceflight

Surprisingly, shortly after launch, one of the Raptor engines goes out, leaving the rocket with 2 engines to finish the remainder of the test flight.

From the multiple YouTube live-steams, including EverydayAstronaut, NasaSpaceflight.com, SpaceX, and more, there was some confusion among viewers.

spacex starship hop 4
source: SpaceX

It is unclear whether or not this was a planned outage or not, as Starship has three engines, and the other two can function completely fine on their own. Being down to two engines did not appear to interrupt the flight, and there is a chance this was done purposefully in order to control fuel loads.

As Starship progressed further towards the peak of its flight, another raptor engine apparently shut off, which is also believed to have been intentional. At this point, the rocket began to progress skyward on just a single engine. Moving at a slight angle it performing a couple of hover maneuvers, barely in view of the cameras.

At this point, the flight was over 4.5 minutes in total, 10:16:04 on nasaspaceflight video, and the rockets had been firing the entire time.

spacex starship hop 5
source: Nasaspaceflight

The Belly Flop

The next occurrence was the “belly flop”, a stunt where Starship will orient itself 90 degrees sideways, falling horizontal to the Earth’s surface at terminal velocity.

spacex starship hop 6
source: nasaspaceflight 10:16:23

The photos above and below were taken just 7 seconds apart, during which time the rocket appears to have repositioned itself by over 45 degrees. We can tell that Starship has quickly begun its free-fall because none of the engines are firing at this point.

spacex starship hop 7
source: Nasaspaceflight 10:16:30

As Starship continues to fall, it surprisingly further orients itself towards the Earth, nose down. Watching the video live, the nosedive appeared slightly nerve wracking, but it was in fact planned and supposed to happen, thankfully.

spacex starship hop 8
source: Nasaspaceflight 10:16:40

The wing-like flaps of the rocket, two on the front and two on the back, angle themselves skyward to apply air resistance drag to control the direction of its free-fall.

spacex starship hop 9
source: SpaceX

As Starship nears the Earth’s surface, the flaps are doing their job. Starship appears to float almost effortlessly towards Earth’s surface, during which time we getting the sense that terminal velocity doesn’t actually seem that fast when we’re watching such a massive vehicle.

spacex starship hop 10
source: SpaceX

When its time for the cigar-shaped rocket to begin preparing for the landing, two of its raptor engines re-engage, swiveling at an angle to control the degree to which it will turn. Within half a second, the ship has rotated ninety degrees, now facing vertically. Starship then re-orients itself vertically again for the landing.

The Rocket’s Downfall

spacex starship hop 11
source: SpaceX

In the moments leading up to landing something strange starts to happen as Starship gets closer to the landing pad.

The flame turns green, as if this is a prelude to some gnarly fireworks display. It is unclear what causes the color change.

Looking closely, the human eye can observe a slight angle between Starship and the landing pad, which is a sign that something is not quite right.

It was at this moment that we all knew destruction would be inevitable.

In the photo to the right, we know something is wrong for two reasons:

  1. Skewed angle of Starship
  2. There are no landing leg folding out

As soon as Starship hits the ground, it immediately explodes, disintegrating, leaving almost no remains. Apparently, the driving cause of this was “lack of header tank pressure”. This means there was not enough fuel to produce the required thrust to slow down the rocket before the landing pad.

In the inevitabilities of what seem to be failure, somehow, the company still managed to put on a show. SpaceX Starship SN8 hop test flight ended with a literal BANG.

spacex starship hop 12
source: SpaceX

It seems there is consensus among SpaceX that many test objectives were successfully achieved. The company was able to gather sufficient data, so… the mission was a success! (regardless of the fact that they didn’t quite “stick the landing”).

crash landing gif
source: the atlantic

All in all, the rocket was airborne for 6 minutes and 42 seconds, and was well in aerodynamic control the entire time up until the crash landing.

What did you expect? SpaceX has a long history of testing rockets, many of which have failed the first time. As with any innovative and new technology, there’s never any guarantee. But one thing is for sure – SpaceX Starship will fly again. There will be another test flight in the not too distant future. There were a few key wins and objectives complete, which we will stay updated about as we learn more.

Wins for Starship

  • “Successful ascent, switchover to header tanks & precise flap control to landing point!” – Elon
  • This was the longest in-flight firing of a raptor engine, ever.
  • The spaceship was in fine-tuned control almost the entire time.
  • Starship demonstrated a successful pivot
  • SpaceX gathered all the data they need.
  • The world has been inspired.

The victorious path towards Mars is well underway, its going to happen faster than we realize! Stay updated with the latest on Starship, missions to Mars, and more space technology by signing up for the newsletter.

Sign up for SPACE TRAVEL News, Progress, and Insights. Delivered right to your inbox, every Monday.

Processing…
Success! You're on the list.

Join us on Social Media:
@EspressoInsight on Twitter, Instagram, and TikTok

Sources & Streams that are worth checking out:

This Private Company is Exploring Deep Space

Xplore is Sending Missions to Deep Space

Headed for the Moon by 2021, with plans for Mars, Venus, and the dwarf planet Ceres in the asteroid belt, Xplore is a company that specializes in sending ships beyond Earth’s orbit into deep space.

Deep space probes – sometimes confused with cubesats or smallsats – are special because they are not restricted to the orbit of any single celestial body. These vehicles travel beyond Earth orbit to untapped places in our solar system.

Sign up for SPACE TRAVEL News, Progress, and Insights. Delivered right to your inbox, every Monday.

Processing…
Success! You're on the list.

Xplore focuses on a “Space as a Service” business model, which means that any company, university, or community can design their own mission into deep space.

The Space as a Service – or SaaS – acronym is a play on the large “Software as a Service” industry based around Silicon Valley tech companies.

This business model will enable greater partnerships to form with other companies and organizations to provide more opportunities for scientists study the unknown mysteries of deep space.

Xcraft: The Spaceship

Xcraft is a multi-mission spacecraft.

From a single launch, the goal is to be able to deploy multiple cubesats to orbit different planets and gather data from all over.

The Xcraft is Modular meaning it can scale to accommodate unique requirements, payloads, additional sensors, etc. The company can easily scale-up and increase the capabilities of the spacecraft based on the needs of a specific mission.

source: Xplore

Missions can last years because it use electric propulsion. The ability to do in-space refueling means the mission doesn’t have to end when fuel is gone, so it has the bandwidth to perform multiple objectives.

Xcraft is designed to be stable for high performance sensors.

Xplore Partnerships

Partnering with the Spaceil Arch Mission, Xplore has helped to send send human data to the Moon as an archive. We now have a 30 million page library documenting all of human history on the moon.

And for $12,500 you can send a tube of 1 gram of whatever material you want into deep space. Partnering with the company Celestis, you can send time capsules, engraved messages, data archives, genetic material, you name it. Some people use this as essentially as a space memorial service for loved ones.

source: Xplore

Beyond Earth Orbit

Great excitement and wonder about space lies beyond Earth orbit. There are these worlds that exist, of which we have fragmented, pixelated images of at best. There is SO much to learn and explore.

There might be life. No one knows the answer.

With the help of Xplore, humans are progressing onward towards deep space!

Sign up for SPACE TRAVEL News, Progress, and Insights. Delivered right to your inbox, every Monday.

Processing…
Success! You're on the list.

Please find a 60-second overview video of Xplore below:

sources:

Building Solar Panels Around the Sun – Dyson Structures

Building solar panels in orbit around the sun would give humans unprecedented amounts of energy, rendering fossil fuels obsolete. In sci-fi, this is called a Dyson Structure.

A Dyson Structure is a hypothetical megastructure built out of solar panels (or mirrors focused at a single point) that a civilization could build around a star to absorb and utilize its energy.

Sign up for SPACE TRAVEL News, Progress, and Insights. Delivered right to your inbox, every Monday.

Processing…
Success! You're on the list.

How would a Dyson Structure transform Humanity?

The Sun is effectively a nuclear reactor in the sky. Collecting even a small fraction of that energy would be transformational.

A Dyson structure would transform humanity by allowing humans to harness the total energy output of the sun.

Angus McKie
source: Angus McKie

The energy output would be able to support 100% of life on Earth. Energy costs would drop significantly.

We would have more power than we would know what to do with.

No more fossil fuels would be needed. The Sun might look a bit different, but we would still have enough solar rays reaching Earth to maintain the greenhouse effect and climate.

Additionally, a large megastructure around the sun would have a surface area of 550 million times the surface of Earth[9], providing a larger amount of space where a civilization could live.

How would energy transfer and storage be managed?

We would not want to send the energy back to Earth. Doing so would cause our planet to heat up to a point that it would be un-livable.

Dyson structures would enable a civilization to tap into virtually unlimited amounts of energy in order to perform work within the infiniteness of outer space.

Ultimately, it would enable a us to become a truly space-faring civilization.

To build a Sphere or a Swarm?

The initial theoretical structure described by Olaf Stapledon in his scifi novel Star Maker in 1937 [1] was a hollow rigid sphere, however, this less realistic than building separate free-floating solar panels.

File:Dyson Swarm.png
Dyson Swarm. source: wikimedia commons

According to Stuart Armstrong, the tensile strength (ability for a material to resist cracking / breaking when being stretched) needed to prevent the Sphere from being ripped apart is too large.

Rotational and gravitational stresses would be immense because the Dyson sphere would have to revolve as a whole.

The sphere would not gravitationally bind to an orbit. There is no center of mass.

A connected spherical design is impossible because the large forces are too large for any material to withstand. As it rotated, the forces would tend to move material towards the equatorial plane.

Possible or Not?

Many consider this to be practically impossible. Dyson Spheres are difficult to build and require an entire planet’s worth of material.

The reason is related to engineering and construction. Complicated design, resource collecting, transport, manufacturing, engineering, construction, and maintenance.

The most practical solution is to build free moving solar panels. Imagine a ring of solar panels around a star, for instance.

“The form of “biosphere” which I envisaged consists of a loose collection or swarm of objects traveling on independent orbits around the star.” – Freeman J. Dyson

Albeit still futuristic, a swarm of panels is the best way to try and harvest a star’s light energy.

What would it look like?

A Dyson structure would be about the size of Earth’s orbit, with a surface temperature of 200-300 deg. Kelvin. It would be radiating infrared radiation.

How would we build a Dyson Structure?

We could build the first Dyson panel in a few decades. Because a megastructure would use such a large amount of material, advances in nanotechnology would help.

Since we do not currently have the ability to successfully use nanomaterials to build structures, the first step in building a Dyson structure is resource gathering the old fashioned way – we would need to start drilling and mining on asteroids or planets to get the required materials.

Thanks to Zepherus’ YouTube video who did the math for this, we know that you would need to mine 12 planets the size of Earth to make a Dyson structure. We would have to dismantle entire solar systems, and then transport these products light years to a star.

Mercury, the closest planet to the sun, contains iron oxide hematite from which we could make mirrors. Mercury is advantageous because it has a small gravitational force, so less energy is required to take off and land rockets there.

WLA hmns Hematite.jpg
Hematite. Source: Houston Museum of Natural Science

Mirrors would be used to reflect light into a small solar plant that would concentrate light energy for storage and utilization.

Autonomous mining, manufacturing, and transportation would be mandatory. It turns out that asteroid mining is important not just for procuring precious metals like gold and silver, but would enable a civilization to increase space manufacturing technology and build stuff in space.

Building the first would be the slowest, taking perhaps 10 years which would lead to of magnitude better capabilities.

The reason individual panels are best is because it would allow humans to take a phased approach to construction. We could start by building just one panel, and then use the energy from that panel to help in creating more. This would create a positive feedback loop, where the more Dyson panels we build, the more energy we have to help us build more, leading to an exponential increase in construction speed.

You would start with just a few mirrors orbiting the sun that could reflect light into a solar power plant.

Some companies, such as Made In Space, are already working on 3D printing giant telescope mirrors.

Sign up for SPACE TRAVEL News, Progress, and Insights. Delivered right to your inbox, every Monday.

Processing…
Success! You're on the list.

Q&A: Frequent Comments from TikTok

  • Q: Would the sun be blocked off?
    • A: In short, possibly. But in practicality, no. We would not cover the entirety of the sun in solar panels.
  • Q: Isn’t a Dyson swarm is better than a Dyson sphere?
    • A: Yes. A rigid and hollow Dyson sphere is impractical for a number of reasons discussed in the article. A Dyson array or swarm is more practical. Since no one has experience building one of these and it seems silly to argue over the design of a hypothetical structure that does not exist yet, I have renamed it: calling it “Dyson Structure” should suffice without being overly ambiguous.
  • Q: How would we get the energy to Earth?
    • A: We wouldn’t want to do this. Building a Dyson sphere would enable us to become a space-faring civilization. We could use the energy there.
  • Q: Would this be better suited for a dwarf star?
    • A: Long-term, since dwarf stars don’t expand, yes.
  • Q: Would we have to disassemble every planet in our solar system?
    • A: Possibly. We could build the first few solar panels and send them in to orbit around the sun in the matter of a few decades if we begin mining Mercury.
  • Q: Is nuclear energy much better than this?
    • A: Hard to say. I’d like to learn more about nuclear energy in the future. What are your thoughts on this? Let me know in the comments below or email me espressoinsight@gmail.com.

Sources:

  1. Olaf Stapledon first proposed it in 1937 in his book Star Maker.
  2. Startrek Episode “Relics”
  3. Freeman Dyson paper published in 1960 about Dyson Shell
  4. http://www.islandone.org/LEOBiblio/SETI1.HTM
  5. https://science.sciencemag.org/content/131/3414/1667.abstract
  6. Future of Humanity by Michio Kaku
  7. Stuart Armstrong
  8. TikTok
  9. https://en.wikipedia.org/wiki/Dyson_sphere

SpaceX Starlink Overview 2021

SpaceX is building Starlink Satellite network to meet the global demand for low-cost, high speed internet.

Latest updates: 1/20/21 – SpaceX launched their 17th Starlink mission from the Cape Canaveral base in Florida, sending 60 more satellites into outer space.

Starlink Key Takeaways:

  • 41.3% of the world doesn’t have access to the internet. Starlink is solving this problem.
    • Fast satellite internet will create opportunities for people when they join the internet for the first time.
  • Starlink adds about 60 satellites to the network per launch. They will soon use Starship to increase this number.
  • Speed: 50 – 150Mbps, latency of 20-40 ms
  • Cost: $99 / month + one-time fee of $499.

Sign up for SPACE TRAVEL News, Progress, and Insights. Delivered right to your inbox, every Monday.

Processing…
Success! You're on the list.

If you live in a remote or rural area, there’s a good chance you might have a difficult time connecting to the internet. This is because service providers have not installed as much infrastructure. With fewer cell towers and ground lines in less populated areas, internet connectivity may be limited.

One way around this is to get satellite internet, which allows data transfer between a ground receiver and a network of satellites in orbit around planet Earth.

satellite internet tiktok comment

The only problem is, it’s not that good. According to a comment on TikTok, current satellite internet could be better.

Because of this, there is market demand for better access to satellite connectivity. A number of companies have recognized this and are working on developing more reliable global broadband.

In a rush to capitalize on the opportunity, SpaceX Starlink has been quite active in deploying satellites to meet this need.

What is Starlink?

SpaceX is sending satellites into orbit (called Starlink), which will bring internet access to remote areas of the globe where there’s no connectivity. Its important to note that the service will work best in areas where population density is low, where smaller clusters of people are attempting to access data at any given time.

starlink satellite network
Starlink global network. Can’t help but think of Skynet from the Terminator? Source: Mark Handley/University College London

SpaceX currently has plans to launch thousands of satellites (at least 12,000) into orbit to meet economic demand for low cost global broadband. By providing global broadband service to clients via satellite, SpaceX plans to use the revenue generated to fund R&D, space missions, sending humans to Mars, and completing Starship development for high-speed Earth to Earth commercial air travel.

Starlink will reportedly build gigabit speed satellite internet for the US and Canada.

The company has anticipated near global coverage for the populated world by 2021. However, the completion of Starlink is estimated to take 10 years and cost $2B.

During launch, the satellites are efficiently packed into the Falcon 9 spaceship. They are designed to be small and fit together seamlessly like folding chairs for easy storage. Each weighs about 260kg. A typical shipment of 60 satellites means a payload of at least 34,392 lbs – over 17 tons.

The company publishes videos of these satellite launches on YouTube, which happen every few weeks. They typically deploy 40-60 satellites per launch.

Initial Beta Release

Starlink initial beta release happened on October 27, 2020. The day before that, on October 26, 2020, the Starlink app was published to the Apple App Store as well as Android, which allows users to setup and monitor their satellite internet.

After opening the app, it prompts you to go outside and point your phone up at the sky, in an area without any trees or powerlines obstructing the view. Apparently after doing this, you can begin the process of setup.

Although anyone can download the app, unfortunately, only a select few customers have been invited to serve as Beta testers.

Reddit user FourthEchelon19 was one of those select people, who get to try it out first. They discussed this on the subreddit r/Starlink. They were also was kind enough to include a screenshot of the invitation email from Starlink, which is below.

starlink beta tester email via reddit
Source: reddit

The company will be sending these few initial users a kit that includes a satellite receiver, router, etc., which will be required in order to access the internet through Starlink.

Starlink Speed and Cost

There will be an expected latency between 20 – 40 ms, there has been nothing reported about data caps.

The capacity for data transfer is not yet at gigabit levels, the initial version will be have estimated speeds of 50 – 150Mbps, which is significantly slower than your typical at-home wifi service from a company like Xfinity or AT&T.

The internet service plan is subscription based, costing $99 / month, with a one-time fee of $499 for a phased array antenna (satellite receiver) and router.

Users will have to purchase and setup the hardware themselves, which is included in the $499 initial fee.

starlink router and antenna
Starlink at-home architecture diagram.
Source: Starlink iOS app

How does Starlink work?

Each satellite is orbiting Earth, which means it is in a perpetual freefall at over 7.8 km/s (17,000 mph), with the force of gravity causing centripetal acceleration. Most of the satellites are located in low earth orbit (LEO) at an altitude of roughly 1100 km. LEO is the ideal distance because this allows for a stronger signal on the ground.

Old model for satellite internet (source: Viasat)

Located 1100 km above sea level this is much lower than the old model where a small number (3) of expensive, high orbiting, geostationary satellites were located 35786 km above Earth, each providing coverage to roughly a third of the globe. Geostationary orbit means rotating at the same speed as Earth, moving at a speed of 3 km/s.

The new satellite model: Starlink will use a tight network of over 4000 satellites.

Being closer to the ground in LEO is advantageous because of the shorter distance the signal has to travel, thus lower latency.

Starlink is closer to the Earth and therefore has to travel faster to maintain obit. (7.8 km/s in LEO, orbits Earth once every 90 minutes. This is similar to the International Space Station.

One of the technical challenges with the satellites moving so quickly that that they are difficult to track via ground stations. There has to be some way for the ground station to rapidly switch communication between different satellites in the network as they move.

Optical communication. source: JAXA

Satellites will be able to optical communication (via light) between each other within line-of site – as long as they aren’t over the horizon.

Speed of light is faster in the vacuum of space, which means inter-satellite data transfer speeds will be extremely fast.

They are using a hall-effect thruster, which, according to Elon Musk, is not that hard to build

Each Starlink satellite has its own solar panel for energy and communicates with ground stations.

Space Debris

To avoid collisions with debris and other objects in space, the satellites use data from the US Department of Defense debris tracking system, to autonomously move around and orient themselves via hall-effect ion thrusters.

Fortunately, there are not a lot of other satellites or debris in low Earth orbit. Starlink’s main objective in this regard is to avoid contributing to the space debris. Once a satellite reaches the end of its usable life, it will de-orbit, burning up on re-entry. It will disintegrate quickly once it is in the presence of air friction in the atmosphere.

So far, the FCC has approved the deployment of 7518 broadband satellites. Satellites are most visible during the first few days of orbit.

Light Pollution concerns: Given human concerns with the ability to view the starry sky night without obstruction, SpaceX has taken measures to make the satellites invisible. They have added shields to darken them. Additionally, the satellites are usually organized to orbit above regions of earth during the daytime.

SpaceX has partnered with Microsoft on the Starlink initiative – the broadband internet service is hosted on Azure.

Future of Starlink

Humans have been sending satellites to outer space since the late 1950s. Since that time, satellite networks have allowed for varying degrees of data transfer on Earth.

With Starlink, this might get better. The company plans to build the largest satellite network ever. Having a larger group of satellites means that they are better able to cope with external factors like weather and other connection impacts.

Since over 40% of people on Earth don’t have access to the internet, Starlink is solving a major problem. Some of these areas do not have electricity, either – so solar panels could be deployed as well.

Starlink system will also be used on MARS – there is no infrastructure or fiber optic networks there, but with satellites, mars will have the global communication system. We will need high bandwidth communications between Earth and Mars.

Sign up for SPACE TRAVEL News, Progress, and Insights. Delivered right to your inbox, every Monday.

Processing…
Success! You're on the list.

Sources:

  • Viasat
  • Starlink.com

Mars Perseverance Rover 2021 Update

Purpose of the Mars Perseverance Rover

NASA’s Mars Perverance rover is on the way to Mars to find out if life ever existed there.

Perseverance will collect samples to try to find fossils, organic material, and more.

What will Perseverance Rover do?

The rover will land on Mars on February 18, 2021.

Landing in Jezero crater, an ancient lake the size of Lake Tahoe, Perseverance rover will explore riverbeds which appear to have provided inflow and outflow of the lake, as well as delta deposits.

Sign up for SPACE TRAVEL News, Progress, and Insights. Delivered right to your inbox, every Monday.

Processing…
Success! You're on the list.

The Jezero crater is of particular interest because it represents the possibility that Mars had water about 4 billion years ago.

Perseverance rover 60-second summary:

NASA also has a website dedicated to the official updates for Perseverance Rover.

What technology does Perseverance have?

  • The stage that brings it to Mars uses hypergolic chemical propellants
  • Perseverance has 23 cameras with 20 megapixel color, 2 microphones, UV laser, Xray spectrometer
    • This is the first time we will have audio data (via the microphones) from a celestial object.
  • During descent a camera will scan the terrain and heat shields will protect it from friction temperatures of 2100 deg. C
  • After landing the sky crane will fly away but crash into the surface nearby
  • Self driving 200 meters per day, perseverance will run for 14 years, powering itself on a 45kg Radio-isotopic thermal electric generator, converting heat from plutonium-238 into electricity.
  • Perseverance rover carries a system to test oxygen production on Mars, called MOXIE. Oxygen production on Mars is an important part of in-situ resource utilization, which humans must take on if we are to ever colonize the red planet.
  • Perseverance also has a 4 pound drone helicopter and coring drill to search for microbial fossils.
  • NASA redesigned the wheels from Curiosity to avoid getting stuck, featuring a wider diameter and smaller tread-width.

You can get Space Travel News every Monday. Sign up below.

Processing…
Success! You're on the list.

sources:

  • mars.nasa.gov/mars2020/
  • additional info: mars.nasa.gov/mars2020/timeline/landing/

55 Space Exploration Statistics for 2021

In order to benchmark human progress in space technology, we keep track of statistics related to spaceflight.

The 2021 spaceflight statistics include economic, satellite, commercial, NASA and government, as well as the International Space Station metrics.

The list is broken down between all-time human spaceflight statistics and those of the most recent calendar year.

Sign up for SPACE TRAVEL News, Progress, and Insights. Delivered right to your inbox, every Monday.

Processing…
Success! You're on the list.

What happened in space this past year?

  1. 112 total launch attempts this year
    • 102 successful launches
    • 10 failed launches
  2. 7 countries / regions launched rockets this year:
    • United States (44)
    • China (38)
    • Europe (5)
    • India (2)
    • Japan (4)
    • Israel (1)
    • Russia (16)
    • Iran (2)
  3. 61 successful launches to low earth orbit
  4. There have been 561 satellites launched into orbit. (as of July 2020 – we’re trying to get the updated numbers ASAP.) [7]
  5. SpaceX Starlink accounted for over 412 of those satellites – dominating the market with 74%. [7]
  6. 21 unique global spaceports that have been used this year.
  7. Low-earth orbit was the most common destination, with 80 launches set for LEO.
  8. The SpaceX Crew Dragon became the first commercially-built space vehicle to carry humans into space, Bob Behnken and Doug Hurley.

Beyond Earth Orbit missions of this past year:

  1. SolO: sun observing satellite launched February 10, 2020 by European Space Agency
  2. Mars Hope: Mars orbiting satellite launched July 19, 2020 by United Arab Emirates
  3. Tianwen-1: Mars orbiter, lander, and rover launched July 23, 2020 by China
  4. Mars 2020: Mars Perseverance rover launched July 30, 2020 by USA
  5. Chang’e 5: Lunar Sample return launched November 23, 2020 by China

All-Time Human Space Exploration Stats

General

spacewalk
source: NASA
  1. Two Space Stations: There are two working space stations in which humans can survive: the International Space Station (ISS) and the Tiangong 2.
  2. There are over 200 organizations that provide products and services to the space industry.
  3. Humans have discovered more than 4,324 exoplanets. [5]
  4. Bruce McCandless II was the first person to perform an untethered spacewalk.

Economics of Spaceflight

  1. Payload Cost to Low Earth Orbit, varying by launch vehicle type [3]:
    • Small-class: Chian Quxian launch vehicle: $17,300/kg and $5 million per launch
    • Small-class: Electron launch vehicle: $23,100/kg and $5 amillion per launch
    • Medium-class: LV3M launch vehicle: $8,000/kg and $63 million per launch
      • Atlas V 551: $5,685/kg
      • Falcon 9: $2,842/kg [9]
    • Heavy-class: Falcon Heavy launch vehicle: $951-1500/kg and $95 million per launch
  2. Revenue of the Global Space Industry: $423.8 billion USD. This is expected to increase by 50% by 2040.
  3. Revenue of the Global Satellite Industry: $271 billion USD

Satellite Statistics

  1. Number of Satellites orbiting Earth: 2,787. [7]
  2. There are over 3200 additional satellites that are unusable.
  3. 1,918 satellites in a Low Earth Orbit.
  4. 137 satellites in a Medium Earth Orbit
  5. 554 satellites in a Geosynchronous Equatorial Orbit, also known as a geostationary orbit.
  6. 57 satellites in an Elliptical Orbit. [6]

Government Agency Statistics

  1. NASA Budget $21.5 billion in 2019, which accounts for 0.4% of the entire US budget.
  2. $60 billion is the cumulative budget of government space agencies world-wide (roughly).
  3. Humans have been visiting space for 60 years. The first humans to travel into space did so in 1961.
  4. There have been nine launch vehicle designs that have successfully gone to space. They are: Vostok, Mercury, Vokshod, Gemini, Soyuz, Apollo Lunar Module, Space Shuttle, Shenzhou, Crew Dragon.
  5. The United States established the US Space Force.
  6. Russians have spent the most time in space, with 28,945 total person days.
  7. The United States has send the most individual people to space of any country, with 346 total people having visited outer space.

Commercial Spaceflight Statistics

  1. SpaceX Earth to Earth travel will enable point-to-point travel anywhere on Earth in under 1 hour.
  2. The X3 ion thruster is currently the most robust and powerful ion thruster for deep space exploration, capable of producing over 5 N of force.
  3. Between 1990 and 2017, there were 635 commercial space launches globally. [4]
  4. Space Tourism: no one really knows what space tourism might cost. Virgin Galactic has tossed around a ticket price of $250,000, but also stated prices may be different. SpaceX’s first commercial passenger, Yusaku Maezawa, has purchased every seat on the first trip to the moon and back for an undisclosed amount.
  5. SmallSat / Cubesat rideshare: SpaceX is offering dedicated rideshare missions starting around $1M, selling optional add-ons such as fuel and payload cargo insurance
  6. There are a few ways that the average person can invest in space exploration: This post covers space stocks, ETFs, and more.

International Space Station Statistics

  1. 396 spaceflights have been launched to the International Space Station
  2. 241 individuals have visited the International Space Station throughout history.
  3. Space Tourism: 8 people have visited the International Space Station as tourists, including 7 people from Russia, each of whom paid about 20 million per trip.
  4. People from 19 different countries have gone to the space station.
  5. The average crew size on the ISS is 6 people.
  6. The space station orbits the Earth 16 times per day.
  7. The surface area of all solar panels attached to the ISS covers more than 1 acre and is 240 feet wide.
  8. The world record for total time in space is 878.5 days, set by Gennady Padalka of Russia across 5 flights.
  9. The U.S. record has been set by Peggy Whitson, who spend 665 total days in space across 3 flights.
  10. The space station has six bedrooms, two bathrooms, a gym, and a 360-degree view bay window
  11. 230 spacewalks have been conducted by astronauts at the space station for upgrades and maintenance.
  12. Cumulative crew time on the International Space Station amounts to over 7,300 days.
  13. The space station has been continuously occupied since November 2000
  14. It took 42 separate flights to send the cargo used to construct and build the ISS into space.
  15. The electrical power systems onboard use 8 miles worth of wiring. [10]
  16. The ISS has 8 ports where spaceships can dock.

Sign up for SPACE TRAVEL News, Progress, and Insights. Delivered right to your inbox, every Monday.

Processing…
Success! You're on the list.
international space station arm
source: NASA

sources:

  1. wikipedia.org/wiki/2019_in_spaceflight
  2. statista.com/topics/5049/space-exploration/
  3. aerospace.csis.org/data/space-launch-to-low-earth-orbit-how-much-does-it-cost/
  4. bts.gov/content/worldwide-commercial-space-launches
  5. exoplanets.nasa.gov/discovery/exoplanet-catalog/
  6. pixalytics.com/satellites-orbiting-earth-2020/
  7. ucsusa.org/resources/satellite-database
  8. en.wikipedia.org/wiki/List_of_spaceflight_records#Most_time_in_space
  9. web.archive.org/web/20080815163222/http://www.spacex.com/press.php?page=18
  10. nasa.gov/feature/facts-and-figures

The Space 200

200+ Space Tech Companies

Recognizing over 200 standout organizations enabling space exploration.

From startups, to large companies, to government organizations – these 200+ companies are building products and services for the space economy – now and into the future.

You may download a copy of the list below (excel file) – it’s free.

the Space 200 Download

The list is constantly being added to, updated, and improved. Please let me know of any suggestions of comments.