Category: space

SpaceX Earth to Earth Travel

Earth to Earth Key Takeaways

  • Air travel will be 20 times faster.
  • Under 1 hour travel time to and from anywhere on Earth.
  • Ticket price may be significantly higher than airlines, at least initially.

Sign up for SPACE TRAVEL News, Progress, and Insights. Delivered right to your inbox, every Monday.

Processing…
Success! You're on the list.

The experience for consumers will start with a boat ride from the departing city, to the rocket launch site roughly 20 miles offshore. Passengers will exit the ferry and begin boarding Starship. The reason it is in the ocean a few miles from any cities is strategic – for safety and to help minimize noise pollution.

In an interview, Gwynne Shotwell has described Earth to Earth in depth and states with confidence that this is something that will definitely exist.

After launch, Starship will exit Earth’s atmosphere and enter orbit, where the vacuum of space will allow frictionless travel at 16,777 miles per hour. Most journeys will take less than 30 minutes, and will be able to go anywhere on Earth in under an hour. For example, passengers will be able to travel from New York City to Shanghai, China in under 39 minutes. The same distance on an airplane would take 15 to 20 hours.

SpaceX has a list of estimated time-tables on their website:

spacex earth to earth travel times
Earth to Earth travel time comparisons. Source: spacex.com

The voyage will feel incredibly smooth, without any of the turbulence often experienced during airplane flights.

In addition to human transport, the US Transportation Command has teamed up with SpaceX to apply the technology in the area of distribution and logistics, where “point-to-point rapid movement of vital resources” would enhance a global supply chain. [1]

SpaceX’s Advantage

SpaceX profitability is important because the company needs to fund future space exploration endeavors; they aim to establish a base on the moon, colonize Mars, and invest in R&D to further advance rocket technology.

“In addition to vastly increased speed, one great benefit to traveling in space outside of Earth’s atmosphere is the lack of friction as well as turbulence and weather.
– SpaceX

With point to point rocket travel on Earth, if SpaceX succeeds in being first to market, they will gain the first mover advantage. The first mover advantage for a space exploration company may be broken down into a couple components:

  • Brand Recognition: SpaceX has done well with establishing strong brand recognition, although spending practically $0 on marketing.
  • Technology: The company has made more than a few advancements and has achieved quite a lot in the way of space technology – from creating Starlink satellite network to landing rockets and making the first fully reusable ship, space travel is significantly cheaper than before. While a typical commercial airplane cannot fly more than one route per day, SpaceX will be able to run 10X the number of flights per day thanks to rocket reusability and faster vehicle turnaround time.
  • Customer Loyalty: The company has built customer loyalty by consistently and successfully helping NASA with various projects [2]. NASA will certainly appear as a repeat customer into the future, and they seem to have a strong partnership.
  • Consumer trust: SpaceX has a rigorous testing process and spent many years before attempting a mission carrying humans. SpaceX makes a point of putting safety first, and has spoken about their goal of making risk not small, but “tiny”. SpaceX has already, for example, sold its first commercial moon flight to art investor Yusaku Maezawa with the #DearMoon mission. [3]
  • Competition: Space travel, exploration and associated technologies are a big whitespace in the market. There are few – if any – competitors entering the market for most of SpaceX’s services. The aerospace industry has Blue Origin, NASA (government), Lockheed Martin, and Boeing, but none of these companies are doing quite the same thing as SpaceX. Given the lack of competitors, SpaceX will play a major role setting the market price for this new type of air travel, which brings negotiating power and optimum competitive positioning. CEO Elon Musk has stated that “competition is good, bring it on” [4] in response to a question about Boeing as a competitor. The SpaceX Earth to Earth service will effectively compete with international airlines, but the target market / end consumer is a small portion of travelers who need to get to their destination quickly and have the financial means to do so.
  • Economies of scale: As SpaceX serves these of customers, the company will continue to try to develop cheaper and better ways to launch people and cargo into outer space. As more people take journeys, the economies of scale that result from these innovations will create a more cost efficient means of doing so.

Carbon Capture

Elon Musk replied to a question about carbon-capture for rocket fuel, stating that “rocket flights will be zero-net carbon long term.”

Airplanes account for 9% of US emissions from transportation. Believe it or not, rockets will be a more environmentally friendly method of transportation than a traditional airplane.

Cost of Earth to Earth rocket service versus Airlines?

Airlines are actually not super profitable. Airlines have been quite un-profitable during the COVID-19 pandemic. Although large by revenue, airline expenses are also very large, so they operate on low margins.

For example, the cost of operations of one of the larger commercial airplanes, the Airbus A30, averages $27500 per hour, which extrapolates to roughly $550,000 total to fly from New York City to Shanghai, China.

The Cost of SpaceX Earth to Earth travel depends on a couple of factors. Passenger cost to break-even essentially comes down to cost per launch / number of passengers. Financials – total operating expenses and margins per flight to calculate minimum sales price to break even. These numbers aren’t yet published.

How much will consumers pay?

Note that carrying capacity (number of passenger seats) on Starship is around 1000 passengers for Earth to Earth, compared to only 100 passengers for a mission to Mars due to the need for spacious amenities on a longer mission. With more passengers onboard for an Earth to Earth voyage, costs could be driven down since it would be divided among more passengers.

source: spacex

Like airlines in the 1940’s, rapid Earth to Earth transit via rocket may likely be a luxury high end service for the first few years. There are 46.8 million people in the world who have a net worth of $1 million or more, so SpaceX probably has a sizeable target market to sell rocket seats.

The amount a consumer is willing to pay depends on the amount of value created. The best way to approach this by thinking about the value of a person’s time. A 20 hour NYC to Shanghai flight versus 1 hour rocket ship ride means 19 hours time saved. When you consider that someone travelling on business could add 19 hours of hypothetical productive time, the value becomes much more clear. Companies would even likely be willing to pay more for this service as they have to write off travel time as an employee payroll expense anyways.

The question is, how much is your time worth? The value is saving people time on air travel. How much is this 19 hours of time saved worth to you?

How much will tickets cost?

According to Head of Operations Gwynne Shotwell, tickets will be cheaper than a first class ticket, but more than economy. Gwynne has mentioned that SpaceX may likely charge a few thousand dollars per passenger per flight. Perhaps one day, the company may provide flights to consumers at a low enough cost to be affordable to the average person. We don’t quite know how much it will cost

Sign up for SPACE TRAVEL News, Progress, and Insights. Delivered right to your inbox, every Monday.

Processing…
Success! You're on the list.

Sources:

  1. https://www.ustranscom.mil/cmd/panewsreader.cfm?ID=29ADE173-D927-8E46-7C6CBC100BAD9F71&yr=2020
  2. https://www.nasa.gov/johnson/HWHAP/welcome-home-bob-and-doug
  3. https://dearmoon.earth/
  4. https://www.entrepreneur.com/article/251129

Saturn’s Moon, Enceladus

There are 62 moons orbiting Saturn. Enceladus is one of the top places we should target to explore and learn more about.

Although each exhibits unique characteristics, Enceladus and is of interest to humans for a couple of reasons – aside from the fact that the temperature is -330 degrees F.

Enceladus moon is currently being studied by NASA for a couple of reasons, mainly because Enceladus has water.

Sign up for SPACE TRAVEL News, Progress, and Insights. Delivered right to your inbox, every Monday.

Processing…
Success! You're on the list.
In Depth | Enceladus – NASA Solar System Exploration
source: solarsystem.nasa.gov

But water on Enceladus is unique:

  • The Enceladus moon is surrounded by 25 mile wide crust made of ice.
  • Beneath the ice, a 6 mile deep ocean harbors hydrothermal vents that can reach temperatures of 400 degrees C.
  • These hydrothermal vents are a result of heat and pressure deep within the core, releasing such massive amounts of heat that cracks have formed in the crust, releasing vapor in the form of geysers.
Cassini Saturn Orbit Insertion.jpg
Cassini Spacecraft. source: NASA/JPL

Much of what we know about Enceladus has come from the Cassini spacecraft, which orbited Saturn, and has observed the moon during flybys.

The ship was able to collect samples of vapor expelled from the geysers, which contained organic material.

Together with water, these are fundamental building blocks for life.

Enceladus contains both water, organic material, and energy – the fundamental building blocks for life. – @espressoinsight

Based on the observations from the Cassini spacecraft, it is possible that the oceans of Enceladus may be habitable to some form of life.

Hot springs are now believed to exist on Enceladus, in the liquid ocean trapped under the moon's ice.
source: NASA/JPL-Caltech

Compared to Titan or even other planets, Enceladus moon is quite small – only 314 miles across. This is similar to one third of the driving distance from Chicago to Dallas.

Given that there is both H2O as well as organic compounds, the planet could in theory provide habitat to some obscure life form. Of course, this is just conjecture.

It cannot be stated for certain whether or not there is some type of aquatic microorganism such as plankton living in the oceans below the crust of Enceladus.

If there is life within the oceans of Enceladus, the bigger question then becomes – did life originate there, or come from somewhere else?

This brings up the question of abiogenesis or panspermia as possible theories for the origin of life.

Could life have evolved there on its own, or might it have arrived via the collision from a meteor or other object?

Sign up for SPACE TRAVEL News, Progress, and Insights. Delivered right to your inbox, every Monday.

Processing…
Success! You're on the list.

sources:

https://www.nasa.gov/feature/jpl/infrared-eyes-on-enceladus-hints-of-fresh-ice-in-northern-hemisphere

Saturn’s Moon, Titan

Saturn’s Moon, Titan, is a top space exploration target for humans in our solar system.

Titan: Key Takeaways

  • Temperature is -180 deg. C (allowing Methane to exist in liquid form).
  • Atmospheric pressure is 45% greater than Earth.
  • Titan is 40% the size of Earth.
  • According to NASA, Titan’s crust is made of H20 ice, and has liquid water as well as ammonia ocean beneath the surface.
  • Titan is almost 1 billion miles from Earth.

Sign up for SPACE TRAVEL News, Progress, and Insights. Delivered right to your inbox, every Monday.

Processing…
Success! You're on the list.

Why explore Saturn’s Moon, Titan?

Titan is a rare and unique place for a number of reasons. There are four components of Titan that make it unique and worth exploring.

1. Precipitation

Aside from Earth, Titan is the only place in our solar system that has precipitation based weather systems.

On Titan, precipitation is in the form of liquid methane and other hydrocarbons, as opposed to water like on Earth.

2. Atmosphere

Of the 160+ known moons in our solar system, Titan is the only one that has an atmosphere.

An atmosphere is an important feature because it shields the planet from harmful radiation, which protects anything that may want to live on or near the surface.

Atmospheres also contribute to the greenhouse effect, trapping heat near the surface, allowing temperature regularity. Titan is so cold that it may seem surprising to hear about the greenhouse effect keeping the planet warm. The fact that Titan is so far from the sun means that it simply receives less heat.

source: NASA Cassini

3. Titan’s geological chemistry

Titan has unique chemistry that features an abundance of methane and a nitrogen based atmosphere that is 50% denser than Earth’s. Methane is a molecule that consists of 4 hydrogen atoms bonded to a single carbon, with a relatively low atomic mass, it is normally a gas on Earth at room temperature and standard conditions. Titan’s conditions, however, are cold enough that methane exists in liquid form.

On Titan, the Selk impact crater location features conditions for life as we know it: evidence of past liquid water, hydrocarbon molecules, as well as oxygen, nitrogen, and energy. The crater was likely formed by some sort of asteroidal impact years ago.

Recently, NASA discovered a unique molecule (cyclopropenylidene) within Titan’s atmosphere, that could be a sign of possible life.

This molecule is interesting not only because it is a carbon based molecule – Titan has plenty of those – but that it is a pre-cursor to biochemical processes performed by biological organisms that we see on Earth.

4. Raw Materials

Humans may one day establish establish satellite colonies in order to access these valuable raw materials like methane to use as fuel for rockets and other vehicles.

Titan’s presence of hydrocarbons in such an abundance on its surface as well as atmosphere, makes it attractive as a possible re-fueling destination.

Methane, for example, is a great potential fuel source.

According to SoCalGas, methane produces more heat and light energy by mass than other fossil fuels or hydrocarbons. It produces significantly less carbon dioxide and other pollutants that contribute to smog and unhealthy air.

Methane is lightweight and is more stable than some commonly used rocket propellants such as liquid hydrogen.

Titan is considerably further than our moon as well as Mars. Because of this, sending unmanned robotic missions there takes significant time (Cassini took 7 years, for example) so we should make an effort to do so sooner to accelerate information gathering.

Astronauts may one day be able to use Titan as a layover location, or a type of galactic gas station, similar to the Moon before longer missions.

Therefore, Titan would make sense as one of the first places where humans may want to establish a base – along with the moon and Mars of course.

Exploring Titan

NASA sent the Cassini-Huygens mission to Titan in 2005 and was actually able to send photos back to Earth.

Since that time, no missions to Titan have been carried out. Perhaps the main reason may be NASA’s budget, which is certainly understandable. We have other initiatives like the International Space Station, the Artemis Space mission, and more.

But there’s good news for our future missions to Titan – in 2026, NASA plans to send another spacecraft towards Titan, which should arrive in 2034. The mission is called Dragonfly, and will examine and document potential chemical processes that could be precursors to life. By taking samples, NASA hopes to find evidence of past life, or at least understand how far prebiotic chemistry may have progressed.

As a drone-based vehicle, the Dragonfly plans to travel over 108 miles, visiting destinations such as the Selk impact crater, which has a large amount of carbon, hydrogen, nitrogen, and oxygen present, as well as evidence of water.

Below are a few pictures of the obscure world from that Cassini space rover, which can be accessed via the Nasa Photo Journal. We notice a few specific features of Titan’s surface. But first, consider joining our email list (we only send 1 email per week).

Sign up for SPACE TRAVEL News, Progress, and Insights. Delivered right to your inbox, every Monday.

Processing…
Success! You're on the list.
source: NASA photo journal
  • We’re able to observe methane lakes on the surface.
  • As the spacecraft descended towards Titan, the picture below was taken. Natural drainage channels look like an area where liquid water once flowed. It’s possible there is a shoreline depicted in the photo as well.
source: NASA photo journal

Below is the first up-close photo of Titan’s surface ever taken. We see chunks of ice, which is evidence of water. the second picture shows globules likely made of frozen water. The clusters here with fewer rocks suggest these may be channels where liquid water once flowed.

source: NASA photo journal

For more of the latest in emerging technology from Space to Biotech and more, join our newsletter, the Emerging Tech Top 3.